Effects of pH in Biochemical Thermodynamics and Enzyme Kinetics

نویسنده

  • Robert A. Alberty
چکیده

In biochemical thermodynamics, the apparent equilibrium constants of enzyme-catalyzed reactions have been represented by K’=Kref10 f(pH), where Kref is a reference chemical reaction, n is the number of hydrogen ions in the reference reaction, and f(pH) is a function of pH that brings in the pKs of the substrates. This equation suggests that hydrogen ions are involved in two different ways in biochemical thermodynamics. If this is true in thermodynamics, it has to be true in kinetics. However, the choice of reference reaction in thermodynamics is arbitrary, and so n cannot be determined from equilibrium measurements. However, when hydrogen ions are consumed in the rate-determining reaction, the experimental limiting velocity of the forward reaction is given by Vfexp = 10 npHVf. Vf is the limiting velocity in the forward direction when n = 0, or Vf can be calculated from experimental data using Vf = 10 npHVfexp. Vf brings in the pKs of the enzyme-substrate complex that reacts in the rate-determining reaction. When hydrogen ions are consumed in the rate-determining reaction, the Haldane equation yields K’=Kref10 f(pH). Since n can be -8 (EC 1.7.7.1), the effects of pH on kinetic and thermodynamic properties can be very large. webMathematica can provide the thermodynamic properties of enzyme-catalyzed reactions that are difficult to calculate and require a database without having Mathematica in a personal computer or knowing how to use it. 63 http://www.beilstein-institut.de/escec2007/proceedings/Alberty/Alberty.pdf ESCEC, September 23 – 26, 2007, Rüdesheim/Rhein, Germany

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of Basic Dye Bromophenol Blue from aqueous solution by Electrocoagulation using Al – Fe Electrodes: Kinetics, Equilibrium and Thermodynamics Studies.

Electrocoagulation (EC) in a batch cell with Al anode and Fe cathode in monopolar parallel (MP) connection was used for the removal of basic dye, Bromophenol Blue (BPB). The effects of current density, pH, temperature and initial dye concentration, on the process were investigated. Equlibrium data were analyzed using four model equations: Langmuir, Freudlinch, Temkin and Dubinin–Radushkevich. D...

متن کامل

Stimuli-responsive Biosynthesis of Gold Nanoparticles: Optimization, Kinetics, and Thermodynamics of Biosorption

Green nanotechnology with the goal of producing sustainable nanomaterials in an eco-friendly approach is becoming an increasing necessity for nanomanufacturing industries. In this regards, biosynthesis is well adopted as a viable method for producing benign nanoparticles for biomedical application. The present study aimed at optimization and study of the effects of external stimuli pH and gold ...

متن کامل

Kinetics, Thermodynamics and Equilibrium Studies on Adsorption of Reactive Red 198 from Textile Wastewater by Coral Limestone as a Natural Sorbent

Abstract Introduction: Dyes are among the most hazardous chemicals in industrial wastesdue to their toxicity for aquaculture, reduction of light permeability, and in turn development of disorders in photosynthesis process. The current study aimed to investigate the efficiency of coral in removing red reactive 198 from textile dye wastewater was investigated. Materials & Methods: In this e...

متن کامل

Recommendations for terminology and databases for biochemical thermodynamics.

Chemical equations are normally written in terms of specific ionic and elemental species and balance atoms of elements and electric charge. However, in a biochemical context it is usually better to write them with ionic reactants expressed as totals of species in equilibrium with each other. This implies that atoms of elements assumed to be at fixed concentrations, such as hydrogen at a specifi...

متن کامل

Montmorillonite Nanoparticles in Removal of Textile Dyes from Aqueous Solutions: Study of Kinetics and Thermodynamics

Dyeing wastewaters are one of the most common pollutants that cause many problems for public health and environment due to dermatitis and skin rashes, cancer production, mutagenesis, etc. Thus, treatment of these wastewaters is necessary. The purpose of this study was to investigate the efficiency of montmorillonite nanoparticles as an adsorbent in adsorption process of Reactive Ye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008